

GENERIC CODE DESIGN ALGORITHMS FOR REVERSIBLE
VARIABLE-LENGTH CODES FROM THE HUFFMAN CODE

Wook-Hyun Jeong and Yo-Sung Ho

Kwangju Institute of Science and Technology (K-JIST)
1 Oryong-dong, Buk-gu, Kwangju, 500-712, Korea

E-mail: {whjeong, hoyo}@kjist.ac.kr

ABSTRACT

Variable-length codes (VLCs) are generally employed to
improve compression efficiency using data statistics.
However, VLCs are weak to bit errors in noisy
transmission environments such as wireless channel.
Recently, reversible variable-length codes (RVLCs) have
been introduced due to their capability of recovering
information from corrupted compressed streams; hence,
enhancing the robustness of VLCs to bit errors. However,
existing RVLCs are complicated in their design and have
some room for improvement in coding efficiency. In this
paper, we propose generic code construction algorithms
both for symmetrical RVLCs and for asymmetrical RVLCs
from the optimal Huffman code table. The proposed algo-
rithms have simpler construction processes and also dem-
onstrate improved performances in terms of the average
codeword length than existing RVLC algorithms.

1. INTRODUCTION

Coding and transmission of video information over com-
munication networks are popularly exploited in various
applications, such as interactive video over the Internet,
personal video communication over wireless networks, and
video broadcasting over satellite. These systems usually
require some error control mechanisms; however, most of
the error recovery schemes provided by networks present
many challenges. Thus, error resilience schemes have re-
ceived a lot of attention from many researchers in order to
make compressed video data robust to transmission errors.

Compressed video streams are very sensitive to bit
errors. In particular, most image and video coding stan-
dards include variable-length codes (VLCs), such as the
Huffman code[1] and the arithmetic code[2]; therefore,
they are so sensitive to bit errors that the decoder may lose
the synchronization. In addition, loss of synchronization
may lead to the loss of several video frames.

In recent days, the reversible variable-length codes
(RVLCs) have been introduced in order to reduce the effect
of channel errors. In RVLC with a resynchronization
marker, we can decode the bitstream both in the forward
and backward directions and recover uncorrupted video
data as much as possible from the received bitstream. On
the other hand, in VLC, we have to throw out all the re-
ceived data until the next resynchronization marker even
after a single bit error.

RVLC can be categorized into two different classes:
symmetrical and asymmetrical RVLCs according to their
bit patterns. The symmetrical RVLC employs the same
decoding table both for the forward and the backward di-
rections. Although the asymmetrical RVLC offers better
coding efficiency than the symmetrical RVLC owing to the
more flexible code assignment, the asymmetrical RVLC
requires two separate code tables. While MPEG-4 includes
an asymmetrical RVLC[3], H.263+ employs a symmetrical
RVLC[4].

Fraenkel et al.[5] presented necessary conditions for
the existence of RVLCs. Takishima et al.[6] proposed the
first work which specifies the method for constructing
symmetrical and asymmetrical RVLCs based on a given
Huffman code to make their average codeword lengths
close to that of the optimal Huffman code. Tsai et al.[7]
improved this algorithm and reduced the average code-
word length. Recently, Tseng et al.[8] introduced a
non-Huffman-code-based scheme for symmetrical RVLC.
This is an exhaustive algorithm, with backtracking and a
bounding. Lin et al.[9] extended Tseng’s method to the
asymmetrical RVLC.

Analysis of these four RVLC algorithms, however,
shows some deficiency in terms of complexity and coding
efficiency. Takishima’s and Tsai’s algorithms that are based
on the Huffman code, have to pre-calculate the number of
available symmetrical codewords at each level prior to
construction of RVLC and some restrictions are imposed
during the construction process. Consequently, some
available RVLCs can be missed, which makes the resulting
RVLC inefficient. Although Tseng’s and Lin’s algorithms
provide better performance that conventional Huff-
man-code-based algorithms, they are not clear in many
critical factors to design RVLCs, such as the starting bit
length and codeword selection mechanisms. Besides, since
Tseng and Lin assume that the sum of local optimizations
can lead to the global optimization, which is not always
true, naturally their proposed backtracking algorithms are
limited. Therefore, conventional algorithms show room for
improvement to construct more efficient RVLCs.

In this paper, we propose generic algorithms to con-
struct symmetrical RVLCs and asymmetrical RVLCs based
on the optimal Huffman code. The proposed algorithms
search more efficient symmetrical and asymmetrical
RVLCs to any given source than existing methods and also
simplify construction processes using essential information
from the Huffman code and the property of average length
function.

IWAIT'2004

LiuSong
111

2. THE SYMMETRICAL RVLC

2.1 Searching for Symmetrical RVLCs

VLCs, composed of only symmetrical codewords, can be
decoded in two directions and they are called symmetrical
RVLCs. This symmetric bit-pattern property can provide a
useful advantage to the construction process. If all the bits
of a symmetrical codeword are inversed, we can obtain
another symmetrical codeword with the same bit length.

■ : symmetrical codewords

Fig 1. Distribution of symmetrical codewords

In order to exploit this property, we search symmet-
rical codewords in the half region, especially assigned to
‘0’, of the binary Huffman tree; thus, the half region is the
set that contains all Huffman codewords which start from
‘0’ bit, as depicted in Fig 1. In this set, available candidates
of the symmetrical RVLC are selected up to 2/S , not S,

where S is the number of total symbols and x is the

smallest integer larger than or equal to x. Finally, we com-
bine the previously chosen symmetrical codewords in the
half region and their bit-inversed versions in the other re-
gion, allocated to ‘1’, and we can obtain a target symmet-
rical RVLC for S, as shown in Fig 2[10].

Fig 2. Construction process with bit-inversion

In Fig 2, we note that the symmetrical bit pattern

makes the prefix condition guarantee the suffix condition
and the bit-inversion operation cannot effect on the instan-
taneous decodability. The Kraft inequality for a Huffman
binary tree is given by :

∑
=

− ≤≤≤
S

i
S

l lli

1
1)...(,12 (1)

where li is the encoded words of lengths. However, the
choice of codewords is accomplished in one half region,

that is the first sub-tree of a full binary tree, so that the
Kraft inequality is revised from Eq. (1).

)...(,
2

1
2 2/1

1
S

S

i

l lli ≤≤≤∑
=

− (2)

When the selected symmetrical codewords in the
half region set are prefix-free in Fig 2(a), reciprocal code-
words with bit-inversion can be instantaneously decoded
only in the other region in Fig 2(b). In this case, these
codewords properly satisfy Eq. (2). A target symmetrical
RVLC is presented with bit-inversed symmetrical code-
words whose bit lengths are the same ones of already cho-
sen codewords, as shown in Fig 2(c). Thus, Eq. (2) is ex-
tended to Eq. (3).

)...(,

2

1
222 2/1

2/

1
S

S

i

l lli ≤≤×≤× ∑
=

− (3)

Since li can be different from or equal to each other,
the index i is extended to S. We obtain the complete Kraft
inequality from Eq. (3).

∑
=

− ≤≤≤∴
S

i
S

l lli

1
1)...(,12 (4)

Therefore, the proposed search mechanism for sym-
metrical codewords with bit-inversion offers instantaneous
decodable symmetrical RVLCs from Eq. (1) ~ Eq. (4).

2.2 ZL Adaptation for Symmetrical RVLCs

There are symmetrical codewords that consist of all ‘0’ bits
at each level in the half region set, as shown in Fig 1.
These codewords are defined as ZLs at level L. For ZLs, we
can consider the following situations.

(1) If we select ZL, the number of ‘0’ bits in both ends of
each chosen symmetrical codeword in the half region
set, except ZL, is restricted to (L─1).

(2) Since the bit-inversion operation is conducted, we can
get the codeword composed of L ‘1’ bits from ZL. Thus,
these two codewords are added to level L. If ZL is cho-
sen carefully at a proper level L, the average length can
be reduced successfully.

In order to construct an efficient symmetrical RVLC

from the optimal Huffman code, the bit length L of ZL is
determined to be Lmin that is the bit length of the shortest
codeword in the given Huffman code. This process is
called ZL adaptation[10].

Fig 3 depicts the comparison of normalized average
lengths of symmetrical RVLCs for several probability dis-
tributions. The normalized average length N& is

)(XH

L
N =& (5)

where H(X) is the entropy of the given probability set and
L denotes the average length of the symmetrical RVLC.
We notice that average length of the symmetrical RVLC
designed by the proposed ZL adaptation is less than those
of other symmetrical RVLCs. In case of the uniform dis-
tribution or nearly uniform distribution, however, the result

IWAIT'2004

LiuSong
112

of ZL─1 rather than ZL has the better performance in terms
of the average length. Thus, more efficient symmetrical
RVLC is located on ZL─1 adaptation or ZL adaptation em-
pirically, as shown Fig3.

(a) Lmin = 2

(b) Lmin = 3

Fig 3. Normalized average length of symmetrical RVLCs

The proposed construction procedure for the sym-
metrical RVLC is presented as follows.

(1) In the half region, ZL is determined. For example, if a
given Huffman code starts from 3-bit codewords, that
is, Lmin is 3, select ‘000’.

(2) All available symmetrical candidates are searched from
the root until the number of chosen codewords is
 2/S . After each selection, remove codewords that

violate the prefix condition.
(3) Construct a symmetrical RVLC by combining the al-

ready chosen codewords and their bit-inversed code-
words.

(4) Repeat (2) and (3) with ZL─1 adaptation. If Lmin is 3, we
choose ‘00’.

(5) Compare the average lengths of two symmetrical
RVLCs and select a more efficient RVLC.

3. THE ASYMMETRICAL RVLC

Asymmetrical RVLCs are determined by codewords se-
lected at the starting level and the number of these code-
words. Since asymmetrical RLVCs do not concern bit pat-
terns of codewords, they are close to the Huffman code.
Thus, we adopt a critical description, Lmin of a given Huff-
man code, as the starting level of an asymmetrical RVLC.

Let the bit length vector n(i) denote the number of
codewords with the bit length i, and nHuff(i) and nRVLC(i) be

bit length vectors of the Huffman code and the RVLC, re-
spectively. In order to design more efficient RVLCs, we
find codewords to be selected at Lmin and nRVLC(Lmin) with
an exhaustive search; however, we take a fast approach to
the optimal RVLC using nHuff(Lmin), ZL, and the minimum
repetition gap (MRG) proposed by Tsai[7].

In addition, the property of the average length func-
tion is useful to the construction procedure. We use the
average length, which is a convex function, as the meas-
urement of coding performance. nRVLC(Lmin) ranges from 1

to minL2 and the average length function has the mini-
mum value in this interval. The most optimal RVLC exists
at this minimum point, which should be the global optimal
point, not the local optimal point. During the design pro-
cedure, we should be careful to avoid the local minimum
point. Thus, we determine nRVLC(Lmin) by checking the av-
erage lengths of typical RVLCs based on MRG, which
makes the proposed design process pass the locally mini-
mum values.

We present a construction algorithm for asymmetri-
cal RVLCs below, and Fig 4 illustrates an example of this
procedure.

(1) Determine the starting point of ntest(Lmin) where ntest(Lmin)
is the bit length vector of each typical asymmetrical

RVLC. If nHuff(Lmin)≤ 12 −minL , ntest(Lmin) is increased from

1; otherwise, ntest(Lmin) is decreased from minL2 , as
shown in Fig 4.

(2) Construct each typical RVLC involving ntest(Lmin) code-
words prioritized based on MRG.. The priority of code-
words is in the ascending order in MRG. For instance, if
Lmin is 3, ‘000’, ‘111’, ‘010’, ‘101’, ‘001’, ‘011’, ‘100’,
and ‘110’ are arranged. As shown in Fig 4, if the average
length of the current typical RVLC is larger than that of
the previous one, stop constructing typical RVLCs.
nRVLC(Lmin) is the previous ntest(Lmin) with minimum value.

(3) Select ZL as one of nRVLC(Lmin) codewords.
(4) In order to find the other (nRVLC(Lmin)─1) codewords,

creat

−
−

1)(

12

minRVLC

minL

Ln
 asymmetrical RVLCs with ZL

where

b

a
 is the number of combinations of size b

from a set of size a. Compare the average length of each
RVLC and select the most efficient one.

Fig 4. Construction procedure for Asymmetrical RVLCs

IWAIT'2004

LiuSong
113

4. EXPERIMENTAL RESULTS

Table I and Table II list codeword assignments for the Eng-
lish alphabet with symmetrical RVLCs and asymmetrical
RVLCs designed by the existing algorithms and the pro-
posed algorithms, and compare their coding performances
in terms of the average codeword length.

In Table I, S1, S2, and S3 are generated by the
Huffman, Takishima’s[6], and Tsai’s[7] algorithms, respec-
tively. Results of S2 and S3 show that their algorithms miss
some available symmetrical RVLCs at Level 3, Level 8,
and Level 9 in spite of the existence of other available can-
didates at those levels. At those levels, bit length vectors of
symmetrical RVLCs should be restricted to those of the
given Huffman code, which impose some redundancies to
a target symmetrical RVLC. In addition, these schemes
construct RVLCs on the Huffman binary tree as many as S.
After the pre-computation of the number of available
codewords at each level, they repeat the adaptation and
search process, whose Big-Oh notation of complexity is

SN
NNO =⋅ |))2((2 .

In Table I, S5 is designed by the proposed algorithm.
Experimental results indicate that the average codeword
length of S5 is about 5.2% and 3.2% shorter than those of
S2 and S3, respectively. In addition, S5 is composed of
pairs of bit inversion, Z3 and ‘111’ are allocated to the most
probable symbols by ZL adaptation, and effective symmet-
rical candidates are not omitted at any level. The complex-

ity of the proposed RVLC scheme is SN
NNO =⋅ |))2((42 .

The proposed algorithm for symmetrical RVLC reduces the
number of symbols to be handled and the search range by
half. This reduction makes a difference of complexity,

SN
NO =|))2((4 between conventional Huffman-code-based

schemes and the proposed schemes.
S4, in Table I, is generated by Tseng’s[8] algorithm.

Tseng’s method seems to overcome existing Huffman
based methods in the viewpoint of efficiency. However, in
the worst case, there exists a significant difference of com-
plexity between Tseng’s algorithm and the new construc-

tion algorithm, which is about SNNO =|)(3 .

In Table II, A1, A2, A3, A4, and A5 are constructed
by the Huffman, Takishima’s[6], Tsai’s[7], Lin’s[9], and
the proposed algorithms, respectively. In case of A2 and A3,
still, some restrictions happen at Level 3 in A2, and at
Level 3, Level 9, and Level 10 in A3.

Although Lin’s algorithm reduces the average length
sufficiently, some room for improvement exists. For
asymmetrical RVLCs, conventional algorithms, either
Huffman-code-based or non-Huffman-code-based algo-
rithms overlook that each asymmetrical codeword is de-
termined by only specific codewords at Lmin.

The proposed approach to the more optimal asym-
metrical RVLC reduces the average length considerably, as
shown in Table II. The average length of A5 is about 5.7%,
3.1%, and 0.34% shorter than those of A2, A3, and A4,
respectively. Since Lin’s algorithm is derived from Tseng’s

algorithm, the difference of complexity SNNO =|)(3 is

fixed in the worst case.

5. CONCLUSIONS

In this paper, we have proposed new generic algorithms to
construct symmetrical RVLCs and asymmetrical RVLCs
based on the optimal Huffman code. For symmetrical
RVLC, we search symmetrical candidates in the half region
set with ZL adaptation and we generate more efficient
symmetrical RVLC by using bit-inversion. In case of
asymmetrical RVLC, we accomplish an exhaustive search.
However, by using critical factors from the given Huffman
code and the property of average length function, we find
fast approach to more efficient asymmetrical RVCL. Our
experimental results have demonstrated that the proposed
generic algorithms simplify the construction processes and
improve coding performance over existing RVLC algo-
rithms.

ACKNOWLEDGEMENT

This work was supported in part by K-JIST, in part by the
Ministry of Information and Communication (MIC)
through the Realistic Broadcasting Research Center at
K-JIST, and in part by the Ministry of Education (MOE)
through the Brain Korea 21 (BK21) project.

REFERENCES

[1] D. Huffman, “A method for the construction of mini-

mum redundancy codes,” Proc. Inst. Radio. Engr., vol.
40, pp. 1098-1101, Sept. 1952.

[2] J.J. Rissanen and G.G. Langdon. Jr., “Arithmetic cod-
ing,” IBM J. Res. Develop., 23, pp. 149-162, 1979.

[3] ISO/IEC 14496-2, “Information technology – coding
of audio/video objects,” Final Draft Int. Std., Part 2 :
Visual, Oct. 1998.

[4] ITU-T Rec. H.263, “Video coding for low bit commu-
nications,” Annex V, 2000.

[5] A.S. Fraenkel and S.T. Klein, “Bidirectional Huffman
coding,” Comp. J., vol. 33, no. 4, 1990.

[6] Y. Takishima, M. Wada and H. Murakami, “Reversible
variable length codes,” IEEE Trans. Comm., vol. 43,
pp. 158-162, Feb. 1995.

[7] C.W. Tsai and J.L. Wu, “On constructing the Huff-
man-code-based reversible variable-length codes,”
IEEE Trans. Comm., vol 49, pp. 1506-1509, Sept.
2001.

[8] H.W. Tseng and C.C. Chang, “Construction of sym-
metrical reversible variable length codes using back-
tracking,” Comp. J., vol. 46, no. 1, 2003.

[9] C.W. Lin, Y.J. Chuang, and J.L. Wu, “Generic con-
struction algorithms for symmetric and asymmetric
RVLCs,” Proc. IEEE Int. Conf. Communication Sys-
tems, vol. 2, pp. 968-972, Nov. 2002.

[10] W.H. Jeong and Y.S. Ho, “Design of symmetrical re-
versible variable-length codes from the Huffman
code,” Picture Coding Symposium, pp. 135-138, April
2003.

IWAIT'2004

LiuSong
114

Table I. Coding performances of symmetrical RVLCs for the English alphabet

Huffman :
S1

Takishima’s
algorithm : S2

Tsai’s
algorithm: S3

Tseng’s
algorithm : S4

Proposed
algorithm : S5 Occurrence

Probability
L codeword L codeword L codeword L codeword L codeword

E 0.14878570 3 001 3 000 3 010 3 000 3 000 (Z3)
T 0.09354149 3 110 3 111 3 101 3 111 3 111
A 0.08833733 4 0000 4 0110 4 0110 3 010 3 010
O 0.07245796 4 0100 4 1001 4 1001 3 101 3 101
R 0.06872164 4 0101 5 00100 4 0000 4 0110 4 0110
N 0.06498532 4 0110 5 11011 4 1111 4 1001 4 1001
H 0.05831331 4 1000 5 01010 5 01110 5 00100 5 00100
I 0.05644515 4 1001 5 10101 5 10001 5 11011 5 11011
S 0.05537763 4 1010 5 01110 5 00100 5 01110 5 01110
D 0.04376834 5 00010 5 10001 5 11011 5 10001 5 10001
L 0.04123298 5 00011 6 001100 6 011110 6 001100 6 001100
U 0.02762209 5 10110 6 110011 6 100001 6 110011 6 110011
P 0.02575393 5 10111 6 010010 6 001100 6 011110 6 011110
F 0.02455297 5 11100 6 101101 6 110011 6 100001 6 100001
M 0.02361889 5 11110 6 011110 7 0111110 7 0010100 7 0010100
C 0.02081665 5 11111 6 100001 7 1000001 7 1101011 7 1101011
W 0.01868161 6 011100 7 0010100 7 0010100 7 0011100 7 0011100
G 0.01521216 6 011101 7 1101011 7 1101011 7 1100011 7 1100011
Y 0.01521216 6 011110 7 0011100 7 0011100 7 0111110 7 0111110
B 0.01267680 6 011111 7 1100011 7 1100011 7 1000001 7 1000001
V 0.01160928 6 111011 7 0100010 7 0001000 8 00111100 8 00111100
K 0.00867360 7 1110100 7 1011101 7 1110111 8 11000011 8 11000011
X 0.00146784 8 11101011 8 00111100 8 01111110 8 01111110 8 01111110
J 0.00080064 9 111010101 9 001010100 9 011111110 8 10000001 8 10000001
Q 0.00080064 10 1110101000 10 0010110100 10 0111111110 9 011111110 9 011111110
Z 0.00053376 10 1110101001 10 1101001011 10 1000000001 9 100000001 9 100000001
Average length 4.15572392 4.69655649 4.60728507 4.46463681 4.46463681

Table II. Coding performances of asymmetrical RVLCs for the English alphabet

Huffman :
A1

Takishima’s
algorithm : A2

Tsai’s
algorithm: A3

Lin’s
algorithm : A4

Proposed
algorithm : A5 Occurrence

Probability
L codeword L codeword L codeword L codeword L codeword

E 0.14878570 3 001 3 001 3 000 3 000 3 000 (Z3)
T 0.09354149 3 110 3 110 3 111 3 100 3 101
A 0.08833733 4 0000 4 0000 4 0101 3 101 3 110
O 0.07245796 4 0100 4 0100 4 1010 4 0010 4 0010
R 0.06872164 4 0101 4 0101 4 0010 4 0011 4 0011
N 0.06498532 4 0110 4 1000 4 1101 4 0110 4 0100
H 0.05831331 4 1000 4 1010 4 0100 4 0111 4 0111
I 0.05644515 4 1001 5 10010 4 1011 4 1110 4 1001
S 0.05537763 4 1010 5 01100 4 0110 4 1111 4 1111
D 0.04376834 5 00010 5 00010 5 11001 5 01001 5 01010
L 0.04123298 5 00011 5 00011 5 10011 5 01010 5 01011
U 0.02762209 5 10110 5 10111 5 01110 5 01011 5 01100
P 0.02575393 5 10111 5 11100 5 10001 5 11001 5 10001
F 0.02455297 5 11100 5 11111 6 001100 5 11010 5 11100
M 0.02361889 5 11110 6 111101 6 011110 5 11011 6 011010
C 0.02081665 5 11111 6 101101 6 100001 6 010001 6 011011
W 0.01868161 6 011100 6 011101 7 1001001 6 110001 6 100001
G 0.01521216 6 011101 6 111011 7 0011100 7 0100001 6 111010
Y 0.01521216 6 011110 8 01110011 7 1100011 7 1100001 6 111011
B 0.01267680 6 011111 8 11101011 7 0111110 8 01000001 7 1000001
V 0.01160928 6 111011 9 111010011 7 1000001 8 11000001 8 10000001
K 0.00867360 7 1110100 9 011110011 8 00111100 9 010000001 9 100000001
X 0.00146784 8 11101011 10 0111110011 8 11000011 9 110000001 10 1000000001
J 0.00080064 9 111010101 10 1110101011 9 100101001 10 0100000001 11 10000000001
Q 0.00080064 10 1110101000 11 11101010011 10 0011101001 10 1100000001 12 100000000001
Z 0.00053376 10 1110101001 13 1110101000111 10 1001011100 11 01000000001 13 1000000000001
Average length 4.15572392 4.42607344 4.30677804 4.18734808 4.172804

IWAIT'2004

LiuSong
115

IWAIT'2004

LiuSong
116

